Power Plant Model Validation and Calibration

Dmitry Kosterev, Steve Yang, Pavel Etingov
WECC JSIS
June 2103
The same power plant tested by two consultants

Which data is correct?
You do not know unless you have an independent way of verifying
Using PMU Data for Model Validation

• BPA has installed PMUs at power plant POIs
• BPA developed Power Plant Model Validation (PPMV) application using PMU data

Record:
- POI bus voltage
- POI bus frequency
- Power plant MWs and MVARs
Turned out neither consultant was right

Consultant A

Consultant B

Reality
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>WSCC BOT required that all generators > 10 MVA to be tested for model validation</td>
</tr>
<tr>
<td>2000</td>
<td>BPA project on using disturbance data for plant model validation</td>
</tr>
<tr>
<td>2001</td>
<td>Using disturbance recordings for validation of governor models</td>
</tr>
<tr>
<td>2006</td>
<td>WECC approves Generating Unit Model Validation Policy which allows use of disturbance recordings for power plant model validation</td>
</tr>
<tr>
<td>2007</td>
<td>NERC starts development of model validation standards MOD-025/026/027, expected to become in effect in 2013</td>
</tr>
<tr>
<td>2008</td>
<td>BPA TIP 52: develop production-grade model validation application using PMU data</td>
</tr>
<tr>
<td>2011</td>
<td>BPA baselines models using Power Plant Model Validation app</td>
</tr>
<tr>
<td>2012</td>
<td>BPA collaborates with DOE on model calibration research</td>
</tr>
</tbody>
</table>
Modeling Governor Response

- PMU data was very instrumental in identifying frequency response characteristics of power plants

BEFORE

Four Corners Plant Outage on December 25, 1999

AFTER

Four Corners Plant Outage on December 25, 1999

Blue = actual, Red = model
Power Plant Model Validation

• What a good models looks like:

Voltage and frequency are inputs
Active and reactive power are “measures of success”

Blue line = actual recording
Red line = model
Power Plant Model Validation

• What a bad model looks like:

Voltage and frequency are inputs
Active and reactive power are “measures of success”

Blue line = actual recording
Red line = model
BPA Modeling Baseline

<table>
<thead>
<tr>
<th>Plant</th>
<th>Active Power</th>
<th>Reactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1(14)</td>
<td>Passable</td>
<td>Needs Review</td>
</tr>
<tr>
<td>H2(18)</td>
<td>Good</td>
<td>Needs Review</td>
</tr>
<tr>
<td>H3(16)</td>
<td>Good</td>
<td>Needs Review</td>
</tr>
<tr>
<td>H4(12)</td>
<td>Flawed, Needs Re-test</td>
<td>Needs Review</td>
</tr>
<tr>
<td>H5(27)</td>
<td>Good</td>
<td>Needs Review</td>
</tr>
<tr>
<td>T1(1)</td>
<td>Good</td>
<td>Needs Review</td>
</tr>
<tr>
<td>T2(2)</td>
<td>Good</td>
<td>Needs Review</td>
</tr>
<tr>
<td>T3(3)</td>
<td>Good</td>
<td>Needs Review</td>
</tr>
<tr>
<td>T4(1)</td>
<td>Good</td>
<td>Needs Review</td>
</tr>
<tr>
<td>W1</td>
<td>Good</td>
<td>Needs Review</td>
</tr>
</tbody>
</table>
BPA Experience with Disturbance-Based Model Validation

• Most common model issues:
 – Power System Stabilizer models
 – Turbine control mode of operation / governor models
 – Generator inertia
 – Deficiencies in model structure

• Other reasons for model mismatch
 – Automatic Generation Controls
 – UEL

• “Clinical” experience:
 – Plants with modern digital systems have good models that stay accurate over time
 – Plants with legacy analog controls have most errors and tend to change in time
Performance Monitoring and Detecting Generator Control Failures

- Once a good baseline is developed, PMU is used for “clinical” assessment of power plant performance

- Controller status at the generator was indicating normal state
- PMU disturbance data indicated actual response very different from what was expected
- Power plant was contacted, controls inspected, found internal failure
Benefits of PMU-based Model Validation

- Disturbance recordings can complement the baseline model development (e.g. TransAlta – BPA work at Centralia)
- PMU-based model validation is an acceptable method for GOs to comply with NERC MOD-026,-027
 - assuming a correct baseline model is developed
- PMU-based model validation can be used by TPs to independently verify that the models provided by GOs are accurate
 - BPA experience suggests that 60 to 70% of models did not match disturbance recordings even after the baseline test was performed
 - TPs need independent method of model verification – it is difficult to police traffic if you do not have a speed radar
- PMU-based model validation allows more frequent model verification and detection of control failures (e.g. Grand Coulee and Colstrip) than once every 10 years (per NERC) or 5 years (per WECC)
Model Calibration
Model Calibration

• Initially, BPA use of the PMU data has been limited to validating dynamic models of power plants:
 – used for pass / fail checking
 – no model adjustments are made should the model be wrong
Model (in)Validation

Simulations done using a model from WECC dynamic data base

Blue = actual
Red = simulated
Model Calibration

• DOE is funding several researchers to do work on power plant model calibration using PMU data
 – PNNL (Kalman filter)
 – Sakis Meliopolis, Georgia Tech (super-calibrator)
 – Bernard Lesieutre, University of Wisconsin (pattern matching)
 – Wei-Jen Lee, University of Texas (particle swarm optimization and non-linear optimization)

• EPRI is also working on PMU-based model calibration

• BPA has worked with Bernie Lesieutre to perform model calibration for CGS and Colstrip
Model Calibration

Simulations done using a calibrated model

Blue = actual
Red = simulated
Model Calibration

Simulations done using a calibrated model

Blue = actual
Red = simulated
Model Calibration Test Cases

- BPA prepared test cases:
 - 12 disturbances (voltage and frequency) are played through a known model to get active and reactive power responses

- Researchers received:
 - 6 data sets (voltage, frequency, active and reactive power) simulated above
 - A distorted model of a generator (H, AVR, PSS, Governor)

- Researchers performed model calibration and gave a re-calibrated model to BPA

- BPA used additional 6 data sets to check how well they did
Observations

• Generator inertia – both PNNL and UW did well
• AVR parameters – transient performance right on, steady-state OK
• PSS – UW did better job finding PSS
• Governor – UW had excellent match of MW responses with parameters off by as much as 25 to 30%
 – Governor response was slow, possibly faster dynamics are not observable, which potentially leads to non-uniqueness in model data sets matching the curve
 – Can we find the data from “baseline tests”?
Baseline Test and Model Development
Baseline Test and Model Development
Baseline Test and Model Development
Baseline Test and Model Development